Abstract

A 3D Fe3O4@MWCNT-CdIIP was synthesized by the oxidizing surface of multi-walled carbon nanotubes with carboxylic acid end groups and its subsequent termination with an ion imprinted polymer. An artificial neural network manifests better predictability than the central composite design methodology for optimising the adsorption procedure. The adsorption capacity was 109 mg g−1 (2.5 times more than non-imprinted polymer) under optimized conditions (pH; 5.6, time; 15 min, concentration; 800 μg mL−1 temperature; 25 °C), which was in accord with Toth isotherm. Fractal-like pseudo-second-order kinetics was found reasonably fast, with 66 % adsorption in 5 min. Solid phase extraction coupled Flame atomic absorption spectrometry method provides selective recognition towards Cd(II), with limit of detection; 1.13 µg/L, limit of quantification; 3.21 µg/L after preconcentration (preconcentration factor; 50) and good robustness. The developed method was applied for Cd(II) determination in food (tea, coffee, bread, tobacco, radish, spinach), water and wastewater (>99 % removal as well). Cd(II) loaded IIP was further utilized to remove anionic dyes with >95 % removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.