Abstract

Effective separation of industrial oily wastewater and oil leak has long been treated as an important link to ensure rapid and harmonious development of economy and society. In this article, a robust superhydrophobic/superlipophilic brass mesh with micro/nano dual-scale structures was successfully fabricated by a fast pulse electrodeposition followed by a two-step simple and nonfluorinated immersion process in alkaline solution of K2S2O8 and 1-Dodecanethiol (NDM) ethanol solution respectively. The as-synthesized novel inorganic membrane not only exhibited an excellent performance for superhydrophobicity (the water contact angle (WCA) of 158° ± 1° and the sliding angle (SA) of 2°± 0.3°) and superoleophilicity (the oil contact angle (OCA) of 0°), but also for anti-corrosion, abrasion resistance and oil/water separation efficiency (up to 99.8%). Especially, it can still maintain high separation efficiency up to 98% after deep abrasion test of 400 cycles, and show no obvious variation for separation efficiency after 50 times reusability. Besides, the prepared mesh possessed an outstanding separation flux capacity both in light and heavy oil/water mixtures, which can reach up to 75 kL·h−1m−2 performed in a self-made gravity self-driven oil-water separation device. By adopting this simple, fast and controllable way, it is expected to save time effectively and may be easily suitable for other conductive metal materials to fabricate new materials for practical continuous oil/water separation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call