Abstract

Pd-based catalysts that prepared by traditional impregnation or co-precipitate method show remarkable activity for catalytic oxidation of hydrocarbon, unfortunately they tend to deactivate in the long-term reaction process or at high temperature by sintering and transformation of active species. We now report a facile strategy to synthesize Pd/Co3O4 with superior catalytic durability for the methane catalytic oxidation. In this method, Pd ions coordinate with −CoOCH2COOH that derived from Co precursor and form the Pd-Co precursor complex at first, this complex was further calcined into Pd/Co3O4 catalysts with strong interaction between Pd and cobalt oxide. Methane catalytic oxidation experiment demonstrated that such Pd-based catalyst possesses intrinsically enhanced catalytic activity and exhibits a high resistance toward deactivate in the harsh reaction condition, in sharp contrast to the conventional catalysts prepared via impregnation or deposition-precipitation routes. TEM, XPS, O2-TPO, and isotopic experiments further indicate that the Pd/Co3O4 could form stronger interaction between PdO and Co3O4 and produce more actives species during long-term reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call