Abstract
Numerous crime-related security concerns exist in e-commerce transactions recently. User authentication for mobile payment has numerous approaches including face recognition, iris scan, and fingerprint scan to identify user's true identity by comparing the biometric features of users with patterns in the signature database. Existing studies on the face recognition problem focus mainly on the static analysis to determine the face recognition precision by examining the facial features of images with different facial expressions for users rather than the dynamic aspects where images were are often vague affected by lighting changes with different poses. Because the lighting, facial expressions, and facial details varied in the face recognition process. Consequently, it limits the effectiveness of scheme with which to determine the true identity. Accordingly, this study focused on a face recognition process under the situation of vague facial features using deep reinforcement learning (DRL) approach with convolutional neuron networks (CNNs) thru facial feature extraction, transformation, and comparison to determine the user identity for mobile payment. Specifically, the proposed authentication scheme uses back propagation algorithm to effectively improve the accuracy of face recognition using feed-forward network architecture for CNNs. Overall, the proposed scheme provided a higher precision of face recognition (100% at gamma correction γlocated in [0.5, 1.6]) compared with the average precision for face image (approximately 99.5% at normal lighting γ=1) of the existing CNN schemes with ImageNet 2012 Challenge training data set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.