Abstract

Face recognition is one of the important biometric authentication research areas for security purposes in many fields such as pattern recognition and image processing. However, the human face recognitions have the major problem in machine learning and deep learning techniques, since input images vary with poses of people, different lighting conditions, various expressions, ages as well as illumination conditions and it makes the face recognition process poor in accuracy. In the present research, the resolution of the image patches is reduced by the max pooling layer in convolutional neural network (CNN) and also used to make the model robust than other traditional feature extraction technique called local multiple pattern (LMP). The extracted features are fed into the linear collaborative discriminant regression classification (LCDRC) for final face recognition. Due to optimization using CNN in LCDRC, the distance ratio between the classes has maximized and the distance of the features inside the class reduces. The results stated that the CNN-LCDRC achieved 93.10% and 87.60% of mean recognition accuracy, where traditional LCDRC achieved 83.35% and 77.70% of mean recognition accuracy on ORL and YALE databases respectively for the training number 8 (i.e. 80% of training and 20% of testing data).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call