Abstract

AbstractA new face‐centred finite volume method (FCFV) for Stokes problems involving sharp interfaces is proposed. Two formulations, based on two strong forms of the Stokes problem, and using different mixed variables, are presented. Particular attention is paid to the symmetry of the resulting system of global equations, and a simple rewriting of the interface boundary condition is proposed to ensure that one of the formulations preserves the symmetry of the linear system that is usually lost when considering material interfaces. Four numerical examples are considered to test the implementation numerically by performing mesh convergence studies, in two and three dimensions. The examples account for discontinuous viscosity as well as the effect of surface tension. The results show that one of the formulations is less sensitive to the numerical stabilisation used in FCFV methods but does not preserve the symmetry of the global system, whereas the other formulation is more sensitive to the stabilisation, but preserves the symmetry of the resulting system of equations. The FCFV method appears as a promising alternative for the simulation of viscous flow involving internal boundaries on conformal meshes. The potential application of the FCFV method for the purpose of geodynamic modelling is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call