Abstract

The force feedback absence in minimally invasive surgeries (MIS) is a chronic problem. The main obstacle is the intensive magnetic resonance (MR) influence on traditional electronic signals. This paper proposes a miniature and MR compatible optical force sensor based on Fabry-Perot interference (FPI) principle and interferometric-intensity modulation method. The FPI sensor, with 400µm outer diameter, is embedded in the tip of a rigid puncture needle with 1.0mm inner diameter. The sensor is simulated and fabricated, followed by signal processing using Fourier and wavelet transform analysis. Calibration results at 20 °C show that the force sensing range and resolution are 0–5N and 0.1N, respectively. Silicon rubber skin phantom insertion experiments suggest that the FPI sensor could identify clearly the type of tissues during the insertion and extraction procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.