Abstract

Developing fabric-based strain sensors with high sensitivity and stability is in high demand for wearable electronics. Herein, carbon nanotubes (CNTs) and polypyrrole (PPy) are coated on a thermoplastic polyurethane (TPU) fabric as strain sensors. A microbridge structure, in which CNT bridges the stretching-induced cracks, has been designed for the TPU-CNT-PPy strain sensor. The microbridge structure can significantly enhance the electrical resilience, ensuring the improved sensitivity and stability of strain sensors. As a result, our TPU-CNT-PPy strain sensors deliver high sensitivity (GF = 231.5) with a broad working range (150%) and fast response and recovery time (166/195 ms). In addition, our TPU-CNT-PPy could also be used as flexible electrodes of the microsupercapacitors (MSCs) as a power supplier for the integrated sensing system. The TPU-CNT-PPy-based MSCs exhibit a high specific capacitance (460.3 mF cm-2 at 0.5 mA cm-2) and excellent cycling stability (96.69% capacitance retention for 10,000 charge/discharge cycles). Finally, we demonstrated an integrated sensing system using TPU-CNT-PPy as both MSCs and strain sensors, where the current signals of the sensors could be well detected via Bluetooth. This study offers a microbridge strategy to fabricate strain sensors with high sensitivity and stability and develops an integrated sensing system for the actual applications of wearable electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.