Abstract

Potato virus Y (PVY), the type member of the genus Potyvirus, is transmitted by aphids and can cause severe damage in several solanaceous family crops. In Nicotiana tabacum, a large genome deletion conferring resistance to PVY, the va gene, is commonly used. This resistance is unfortunately associated with lower tobacco quality parameters, potentially due to the presence of several other important genes in the deleted region. In the present study, we have used next-generation sequencing to analyze the transcriptome of a dozen of tobacco F7 recombinant inbred lines (RILs) segregating for PVY resistance. After comparison with a reference transcriptome, genes differentially expressed between resistant and susceptible plants were identified. About 30 candidate sequences were selected, including a sequence annotated as encoding an eukaryotic translation initiation factor 4E (eIF4E), which was strongly expressed in susceptible plants but not in resistant ones. Other differentially expressed candidates are mostly related to photosynthesis. A complete correlation between susceptibility and expression of this eIF4E sequence was confirmed by amplification in 91 F8 RILs and in a segregating F2 population. The gene was mapped on chromosome 21 of the tobacco genetic map and corresponds to an eIF4E isoform derived from the N. sylvestris parent of tobacco. Final confirmation of the identification of the va gene came from the analysis of two tobacco lines with missense mutations in the eIF4E gene and which correspondingly showed resistance to PVY infection. Screening of a large collection of tobacco accessions revealed a strong correlation between the status of this eIF4 gene and PVY resistance, but the identification of a few resistant accessions with an apparently intact gene suggests the possible existence of alternative resistance sources. The identification of the va gene and of molecular markers linked to it or to the large deletion associated with it opens the way to breeding efforts aimed at breaking the linkage drag associated with this valuable resistance gene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.