Abstract

The marine environment has unique properties of light transmission, with an attenuation of long wavelengths within the first meters of the water column. Marine organisms have therefore evolved specific blue-light receptors such as aureochromes to absorb shorter-wavelength light. Here, we identify and characterize a light, oxygen, or voltage sensing (LOV) containing histidine kinase (LOV-HK) that functions as a new class of eukaryotic blue-light receptor in the pico-phytoplanktonic cell Ostreococcus tauri. This LOV-HK is related to the large family of LOV-HKs found in prokaryotes. Phylogenetic analysis indicates that the LOV domains from LOV-HKs, including O.tauri LOV-HK, and phototropins (phot; plant and green algal LOV serine/threonine kinases) have different evolutionary histories. Photochemical analysis shows that the LOV domain of LOV-HK binds a flavin cofactor and absorbs blue light with a fast photocycle compared with its prokaryotic counterparts. Ostreococcus tauri LOV-HK expression is induced by blue light and is under circadian control. Further, both overexpression and downregulation of LOV-HK result in arrhythmia of the circadian reporter CCA1:Luc under constant blue light. In contrast, photochemical inactivation of O.tauri LOV-HK is without effect, demonstrating its importance for function of the circadian clock under blue light. Overexpression/downregulation of O.tauriLOV-HK alters CCA1 rhythmicity under constant red light, irrespective of LOV-HK's photochemical reactivity, suggesting that O.tauri LOV-HK also participates in regulation of the circadian clock independent of its blue-light-sensing property. Molecular characterization of O.tauri LOV-HK demonstrates that this type of photoreceptor family is not limited to prokaryotes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.