Abstract

Neste trabalho abordaram-se questões relacionadas à infinitude do conjunto dos números primos, entendidas originalmente como a não existência do maior desses números, foi demonstrada por Euclides (provavelmente o primeiro) por volta do ano 300 antes de Cristo, quando buscava caracterizar os chamados números perfeitos. Entretanto, para a matemática moderna, ainda é possível classificar os conjuntos infinitos quanto ao seu tamanho: “infinitos grandes” ou “infinitos pequenos”. Neste contexto, quão grande é o conjunto dos números primos? Na busca pela resposta a esta questão deparou-se com outras tantas demonstrações do teorema de Euclides, relacionando variadas áreas da matemática, que se buscou por bem revisitar a questão da infinitude dos números primos de maneira mais completa. Então, para responder estas questões, resgataram-se algumas dessas interessantes, importantes e engenhosas demonstrações.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.