Abstract

Dyson analysed the low-energy excitations of a ferromagnet using a Hamiltonian that was non-Hermitian with respect to the standard inner product. This allowed for a facile rendering of these excitations (known as spin waves) as weakly interacting bosonic quasi-particles. More than 50 years later, we have the full denouement of the non-Hermitian quantum mechanics formalism at our disposal when considering Dyson's work, both technically and contextually. Here, we recast Dyson's work on ferromagnets explicitly in terms of two inner products, with respect to which the Hamiltonian is always self-adjoint, if not manifestly 'Hermitian'. Then we extend his scheme to doped anti-ferromagnets described by the t-J model, with hopes of shedding light on the physics of high-temperature superconductivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call