Abstract

In future wireless communication systems, several radio access technologies will coexist and interwork to provide a great variety of services with different requirements. Thus, the design of flexible and reconfigurable hardware is a relevant topic in wireless communications. The combination of high performance, programmability and flexibility makes Field-programmable gate array a convenient platform to design such systems, especially for base stations. This paper describes a dynamically reconfigurable baseband modulator for Orthogonal Frequency Division Multiplexing and Filter-bank Multicarrier modulation waveforms implemented on a Virtex-7 board. The design features Dynamic Partial Reconfiguration (DPR) capabilities to adapt its mode of operation at run-time and is compared with a functionally equivalent static multi-mode design regarding processing throughput, resource utilization, functional density and power consumption. The DPR-based design implementation reserves about half the resources used by static multi-mode counterpart. Consequently, the baseband processing dynamic power consumption observed in the DPR-based design is between 26 mW to 90 mW lower than in the static multi-mode design, representing a dynamic power reduction between 13% to 52%. The worst-case DPR latency measured was 1.051 ms, while the DPR energy overhead is below 1.5 mJ. Considering latency requirements for modern wireless standards and power consumption constraints for commercial base stations, the DPR application is shown to be valuable in multi-standard and multi-mode systems, as well as in scenarios such as multiple-input and multiple-output or dynamic spectrum aggregation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.