Abstract

In these notes we develop a link between the Kadison–Singer problem and questions about certain dynamical systems. We conjecture that whether or not a given state has a unique extension is related to certain dynamical properties of the state. We prove that if any state corresponding to a minimal idempotent point extends uniquely to the von Neumann algebra of the group, then every state extends uniquely to the von Neumann algebra of the group. We prove that if any state arising in the Kadison–Singer problem has a unique extension, then the injective envelope of a C*-crossed product algebra associated with the state necessarily contains the full von Neumann algebra of the group. We prove that this latter property holds for states arising from rare ultrafilters and δ-stable ultrafilters, independent, of the group action and also for states corresponding to non-recurrent points in the corona of the group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.