Abstract
The present paper deals with the problem of diagonalizing matrices using a control system of the form A = [U, A], where [U, A] = UA - AU and A, U are real matrices. It is shown that the feedback U = [N, A + AT] + p[AT, A], N diagonal, rho > 0 allows to solve the diagonalization problem under the assumption that the to be diagonalized matrix has real spectrum. Moreover, in the case of a complex spectrum, the feedback allows to check if a matrix is stable or to compute all eigenvalues of a matrix or roots of a polynomial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.