Abstract
A completely integrable dynamical system in discrete time is studied by methods of algebraic geometry. The system is associated with factorization of a linear operator acting in the direct sum of three linear spaces into a product of three operators, each acting nontrivially only in the direct sum of two spaces, and subsequently reversing the order of the factors. There exists a reduction of the system, which can be interpreted as a classical field theory in the 2+1-dimensional space-time, whose integrals of motion coincide, in essence, with the statistical sum of an inhomogeneous 6-vertex free-fermion model on the 2-dimensional kagome lattice (here the statistical sum is a function of two parameters). This establishes a connection with the “local,” or “generalized,” quantum Yang-Baxter equation. Bibliography:10 titles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.