Abstract

We review a self-consistent scheme for modelling trapped weakly-interacting quantum gases at temperatures where the condensate coexists with a significant thermal cloud. This method has been applied to atomic gases by Zaremba, Nikuni, and Griffin, and is often referred to as ZNG. It describes both mean-field-dominated and hydrodynamic regimes, except at very low temperatures or in the regime of large fluctuations. Condensate dynamics are described by a dissipative Gross-Pitaevskii equation (or the corresponding quantum hydrodynamic equation with a source term), while the non-condensate evolution is represented by a quantum Boltzmann equation, which additionally includes collisional processes which transfer atoms between these two subsystems. In the mean-field-dominated regime collisions are treated perturbatively and the full distribution function is needed to describe the thermal cloud, while in the hydrodynamic regime the system is parametrised in terms of a set of local variables. Applications to finite temperature induced damping of collective modes and vortices in the mean-field-dominated regime are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.