Abstract

In real-world scene perception, human observers generate sequences of fixations to move image patches into the high-acuity center of the visual field. Models of visual attention developed over the last 25 years aim to predict two-dimensional probabilities of gaze positions for a given image via saliency maps. Recently, progress has been made on models for the generation of scan paths under the constraints of saliency as well as attentional and oculomotor restrictions. Experimental research demonstrated that task constraints can have a strong impact on viewing behavior. Here, we propose a scan-path model for both fixation positions and fixation durations, which include influences of task instructions and interindividual differences. Based on an eye-movement experiment with four different task conditions, we estimated model parameters for each individual observer and task condition using a fully Bayesian dynamical modeling framework using a joint spatial-temporal likelihood approach with sequential estimation. Resulting parameter values demonstrate that model properties such as the attentional span are adjusted to task requirements. Posterior predictive checks indicate that our dynamical model can reproduce task differences in scan-path statistics across individual observers. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.