Abstract

Four photographs of bubble rafts are used as a basis for discussion of the structure of grain boundaries in pure metals. In these photographs one can follow the gradual transition from a small-angle boundary made up of clearly separate dislocations to a large-angle boundary where the dislocation structure is hardly recognizable. As the angle is increased, a continuous shortening of the dislocations, accompanied by the widening of a crack on the tensile side, is seen, and the process culminates in a structure which is perhaps best described in terms of local fit and misfit. The fact is also illustrated that the dislocation content of the boundary depends on the angle of the boundary, as well as on the disorientation of the crystals that it separates. If a boundary turns it must therefore gain or lose dislocations. The bearing of this on the measurement of grain-boundary energies is discussed. Other points considered concern the range of validity of calculations of the energy of dislocation walls, and slip and diffusion along grain boundaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.