Abstract
We develop a dynamical formulation of one-dimensional scattering theory where the reflection and transmission amplitudes for a general, possibly complex and energy-dependent, scattering potential are given as solutions of a set of dynamical equations. By decoupling and partially integrating these equations, we reduce the scattering problem to a second order linear differential equation with universal initial conditions that is equivalent to an initial-value time-independent Schrödinger equation. We give explicit formulas for the reflection and transmission amplitudes in terms of the solution of either of these equations and employ them to outline an inverse-scattering method for constructing finite-range potentials with desirable scattering properties at any prescribed wavelength. In particular, we construct optical potentials displaying threshold lasing, antilasing, and unidirectional invisibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.