Abstract

The singular Lagrangian system with higher derivatives is analyzed with the aid of the Ostrogradski transformation and the Dirac formalism. The formulation of canonical theory is developed so that the equivalence between the Lagrange formalism and the Hamilton one is maintained. As a practical example, the acceleration-dependent potentials appearing in the Lagrangian of two-point particles interacting gravitationally are dealt with and the equivalence between the two Hamiltonians that follow from the two Lagrangians which are related by the coordinate transformations is shown. It is also shown, when the constraints are all first class, that a consistent generator of gauge transformation is constructed. Typical examples are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.