Abstract
Combinatory Category Grammar (CCG) supertagging is a task to assign lexical categories to each word in a sentence. Almost all previous methods use fixed context window sizes to encode input tokens. However, it is obvious that different tags usually rely on different context window sizes. This motivates us to build a supertagger with a dynamic window approach, which can be treated as an attention mechanism on the local contexts. We find that applying dropout on the dynamic filters is superior to the regular dropout on word embeddings. We use this approach to demonstrate the state-of-the-art CCG supertagging performance on the standard test set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.