Abstract

Urban canopy parameterizations (UCPs) are necessary in mesoscale modelling to take into account the effects of buildings on wind and turbulent structures. This study is focused on the dynamical part of UCPs. The main objective is twofold: first, computing important UCP input parameters (turbulent length scales and the sectional drag coefficient) by means of Reynolds-averaged Navier–Stokes (RANS) simulations of turbulent flow; and second, comparing UCP variables with spatially-averaged properties obtained from RANS simulations for the same configurations. The results show the importance of using a suitable parameterization of the drag force for different packing densities. An urban canopy parameterization that is a compromise between simplicity and accuracy is proposed. This scheme accounts for the variation of drag coefficients with packing densities, and has a parameterization of turbulent length scales. The technique adopted ensures that, at least for the simple configurations studied, the urban canopy parameterization gives values of spatially-averaged variables similar to those computed from a more complex simulation, such as RANS that resolves explicitly the flow around buildings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.