Abstract

A dynamic trap well model is developed to describe the complex relaxations of functional segments, and explore the working principles behind the hydrothermal coupling effect in shape memory polymers (SMPs). A constitutive relationship among shape fixity strain, shape recovery strain and relaxation time has been formulated to characterize the hydrothermal coupling effect using geometrical parameters (i.e. width and height) of trap wells. Moreover, effects of temperature and solvent absorption on dynamic relaxation behaviours of SMPs have been formulated based on the Flory-Huggins theory and Fokker-Plank probability equation. The trap well model effectively analyzes the shape fixity ratio and shape recovery ratio within ranges of 50–100% and 0–100%, respectively. Finally, an extended Maxwell model is proposed to formulate the dynamic mechanical behaviours of SMPs with hydrothermal shape-memory effect (SME), and the analytical results have been verified using the experimental results reported in literature. A good agreement between the analytical results obtained from the proposed model and the experimental data is present, where the correlation coefficient ( R 2 ) is 95%. The present study firstly introduces the dynamic trap well model for shape memory behaviours and intricate relaxations, and then accurately predicts the dynamic shape recovery of SMP in response to hydrothermal stimulus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call