Abstract
Moving bottlenecks in highway traffic are defined as a situation in which a slow-moving vehicle, be it a truck hauling heavy equipment or an oversized vehicle, or a long convey, disrupts the continuous flow of the general traffic. The effect of moving bottlenecks on traffic flow is an important factor in the evaluation of network performance. This effect, though, cannot be assessed properly by existing transportation tools, especially when the bottleneck travels relatively long distances in the network. This paper develops a dynamic traffic assignment (DTA) model that can evaluate the effects of moving bottlenecks on network performance in terms of both travel times and traveling paths. The model assumes that the characteristics of the moving bottleneck, such as traveling path, physical dimensions, and desired speed, are predefined and, therefore, suitable for planned conveys. The DTA model is based on a mesoscopic simulation network-loading procedure with unique features that allow assessing the special dynamic characteristics of a moving bottleneck. By permitting traffic density and speed to vary along a link, the simulation can capture the queue caused by the moving bottleneck while preserving the causality principles of traffic dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Part C: Emerging Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.