Abstract

Errors in cloud cover derived by using a fixed threshold applied to imagery data depend not only on the fractional cover but also on cloud size. As a result, a fixed threshold applied to two scenes having the same cloud cover will produce different estimates of the cover when the clouds in the two scenes have different sizes. To allow for this influence due to cloud size, a dynamic threshold method is presented. In this method an infrared threshold is adjusted to achieve the highest correlation between the threshold‐derived cloud cover and the mean emitted radiance for mesoscale‐sized subregions within the scene. For single‐layered cloud systems this threshold achieves a cancellation of errors in the cloud cover for the subregions so that the resulting cloud cover for the region and the associated estimates of cloud properties are in fair agreement with estimates obtained using the spatial coherence method. The agreement illustrates the validity of the layered cloud model used in different ways by the two methods. The performance of the dynamic threshold method is contrasted with that of a fixed threshold applied to the same data in order to illustrate the merits of applying a scene‐dependent threshold.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call