Abstract

AbstractTriboelectric nanogenerator (TENG) is a promising energy harvester to overcome the energy depletion issue. The surface structure has been considered as an effective way to enhance the triboelectric performance. Herein, a dynamic supercritical carbon dioxide (scCO2) foaming method, which introduced a scCO2 flow field during scCO2 saturation, was proposed to fabricate thermoplastic polyurethane (TPU) foams with surface wrinkly structures. The size of the surface wrinkles could be regulated in the range of 1.8–10 μm by varying the foaming pressure. The surface wrinkled TPU film with wrinkle wave length of 2.4 μm demonstrated an excellent enhancement in output voltage (130%), current (180%), and maximum transfer charge (130%) when paired with surface structured polydimethylsiloxane film in a TENG. Due to the excellent durability and flexibility of the composing materials, the developed TENG showed outstanding stability in long‐term continuous operation. With a high power density of 0.5 W/m2 achieved on a 107 Ω external load, the flexible TENG could be used to charge capacitors, power light‐emitting‐diodes, and served as a self‐powered sensor to detect various human movement behaviors. This work provides a new path for the fabrication of surface wrinkled films for the sustainable development of high performance TENGs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.