Abstract
Many studies have demonstrated that multiple classifier systems, such as the random subspace method (RSM), obtain more outstanding and robust results than a single classifier on extensive pattern recognition issues. In this paper, we propose a novel subspace selection mechanism, named the dynamic subspace method (DSM), to improve RSM on automatically determining dimensionality and selecting component dimensions for diverse subspaces. Two importance distributions are proposed to impose on the process of constructing ensemble classifiers. One is the distribution of subspace dimensionality, and the other is the distribution of band weights. Based on the two distributions, DSM becomes an automatic, dynamic, and adaptive ensemble. The real data experimental results show that the proposed DSM obtains sound performances than RSM, and that the classification maps remarkably produce fewer speckles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.