Abstract
The vital state variables in marine alkaline protease (MP) fermentation are difficult to measure in real-time online, hardly is the optimal control either. In this article, a dynamic soft sensor modeling method which combined just-in-time learning (JITL) technique and ensemble learning is proposed. First, the local weighted partial least squares algorithm (LWPLS) with JITL strategy is used as the basic modeling method. For further improving the prediction accuracy, the moving window (MW) is used to divide sub-dataset. Then the MW-LWPLS sub-model is built by selecting the diverse sub-datasets according to the cumulative similarity. Finally, stacking ensemble-learning method is utilized to fuse each MW-LWPLS sub-models. The proposed method is applied to predict the vital state variables in the MP fermentation process. The experiments and simulations results show that the prediction accuracy is better compared to other methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.