Abstract

Global economic fluctuations as exemplified by the recent COVID-19 financial crisis significantly impact the construction industry, particularly steel rebar supply chain and procurement. This impedes engineers’ efforts toward achieving near-zero rebar-cutting waste due to dynamic rebar minimum order quantities and maximum lengths imposed by steel mills. This study addresses the challenge of achieving near-zero rebar-cutting waste by proposing a model that simulates the level of optimization in minimizing rebar-cutting waste amidst such dynamics. The model was implemented in a case study involving reinforced concrete columns in a high-rise building. While achieving near-zero waste consistently proved challenging, particularly for greater than 50 tons of minimum quantity, the study identified a maximum 12 m rebar variant that attained this target regardless of minimum order quantity. Nonetheless, this study introduces a real-time decision-support system for rebar procurement, empowering engineers to optimize usage and minimize waste. This system facilitates near-zero rebar-cutting waste levels in response to rebar procurement requirement dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.