Abstract

This paper concerns a disassembly line balancing problem (DLBP) in remanufacturing that aims to allocate a set of tasks to workstations to disassemble a product. We consider two objectives in the same time, i.e., minimising the number of workstations required and minimising the operating costs. A common approach to such problems is to covert the multiple objectives into a single one and solve the resulting problem with either exact or heuristic methods. However, the appropriate weights must be determined a priori, yet the results provide little insight on the trade-off between competing objectives. Moreover, DLBP problems are proven NP-complete and thus the solvable instances by exact methods are limited. To this end, we formulate the problem into a multi-objective dynamic program and prove the monotonicity property of both objective functions. A backward recursive algorithm is developed to efficiently generate all the non-dominated solutions. The numerical results show that our proposal is more efficient than alternative exact algorithms proposed in the literature and can handle much larger problem instances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.