Abstract

Material flow modeling constitutes an important approach to predicting and understanding the flows of materials through the anthroposphere into the environment. The new “Dynamic Probabilistic Material Flow Analysis (DPMFA)” method, combining dynamic material flow modeling with probabilistic modeling, is presented in this paper. Material transfers that lead to particular environmental stocks are represented as systems of mass-balanced flows. The time-dynamic behavior of the system is calculated by adding up the flows over several consecutive periods, considering changes in the inflow to the system and intermediate delays in local stocks. Incomplete parameter knowledge is represented and propagated using Bayesian modeling. The method is implemented as a simulation framework in Python to support experts from different domains in the development of their application models. After the introduction of the method and its implementation, a case study is presented in which the framework is applied to predict the environmental concentrations of carbon nanotubes in Switzerland.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.