Abstract

Water-triggered shape memory polymers (SMPs) have been extensively studied for biomedical applications due to their advantages of non-thermal actuation capability. However, few studies have been carried out to explore the working principle of shape recovery onset, which is essentially determined by the complex reactions between polymer macromolecules and water molecules. In this study, we developed a phase separation model to describe the dynamic glass transition in water-triggered SMPs. Based on the phase transition theory, dense and dilute phase separations of polymer macromolecules can be achieved when the dynamic diffusions of water molecules in the SMPs undergo dehydration and absorption processes, respectively. Then, the dynamic glass transition is resulted from the dehydration and absorption of water molecules, leading to the dense and dilute phases in the SMPs. Therefore, a free-energy equation has been developed to characterize the recovery onset, in which the mixing free energy and elastic free energy are originated from the Flory–Huggins solution theory and phase separation model, respectively. Moreover, the glass transition and its connection to shape recovery behaviors, i.e. recovery ratio, relaxation time and dynamic mechanical modulus, have also been investigated, according to the Fick’s diffusion law. Meanwhile, onset of programmable recovery has been explained by the dynamic phase separation, based on the transpiration theory and permeability model. Finally, the proposed model is verified using the experimental results reported in the literature. This study is expected to provide a fundamental approach to formulate the constitutive relationship between the dynamic phase separation and programmable recovery onset in the water-triggered SMPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call