Abstract

A dynamic partitioning scheme for a large power system is used to speed up the transient stability solution by utilizing different step sizes for the different portions. The partitioning and the different step sizes naturally lend themselves to a parallel implementation. Results are obtained by utilizing the successive overrelaxation (SOR) Newton parallel algorithm on the Alliant FX/8, an eight-processor parallel computer. For a 662 bus system, a total speedup, by partitioning and parallelizing, of 33.5 is obtained. Since parallelization by itself with 8 processors can produce a speedup of about 7, the partitioning scheme provides a speedup factor of about 5. The partitioning scheme is not specific to either the SOR Newton algorithm or the Alliant machine, and its application to any other parallel method should result in a similar speedup. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.