Abstract

Assembly sequence planning (ASP) plays an important role in intelligent manufacturing. As ASP is a non-deterministic polynomial (NP) hard problem, it is scarcely possible for a brute force approach to find out the optimal solution. Therefore, increasing meta-heuristic algorithms are introduced to solve the ASP problem. However, due to the discreteness and strong constraints of ASP problem, most meta-heuristics are unsuitable or inefficient to optimize it. Harmony search (HS) algorithm is one of the most suitable meta-heuristics for solving the problem. This paper proposes a dynamic parameter controlled harmony search (DPCHS) for solving ASP problems including a transformation of the assembly sequences by the largest position value (LPV) rule, initializing harmony memory with opposition-based learning (OBL) and designing dynamic parameters to control evolution. The key improvement to former work lies in the introduction of a dynamic pitch adjusting rate and bandwidth, which are adapting their value during the evolution. The performances of the DPCHS and the fixed harmony search algorithm are compared thoroughly in the case studies. Meantime, the efficiency of this algorithm in solving ASP problems is tested using two cases, and the results of other popular algorithms are compared. Furthermore, the DPCHS has been successfully applied to an industrial ASP problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.