Abstract

In the present work, an innovative design strategy for the optimization of the dynamic performances and the structural loads of heavy loaded vibrating screens is presented. A dynamic model of a vibrating screen for the selection of inert materials in an asphalt plant is proposed, and a numerical optimization procedure is applied to selected design parameters and geometrical features. The algorithm provides a tool to improve the dynamic behavior of vibrating screens of different geometric and inertial properties. The results are analyzed, in order to find the parameters apt to minimize the pitching angle of the examined screen during stationary working conditions, thus providing a better material selection by reducing gravel throwback. A numerical FEM model analysis and an experimental strain-gage campaign have been conducted on a realization of the vibrating screen, testing two optimized and un-optimized configurations, to verify the FEM model results. The complete work gives the machine designer a powerful tool, validated by means of full scale experimental tests, to optimize the dynamic behavior of the screen and to verify its fatigue resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call