Abstract

In reality, many multi-objective optimization problems are dynamic. The Pareto optimal front (PF) or Pareto optimal solution (PS) of these dynamic multi-objective problems (DMOPs) changes as the environment change. Therefore, solving such problems requires an optimization algorithm that can quickly track the PF or PS after an environment change. Prediction-based response mechanism is a common method used to deal with environmental changes, which is commonly known as center point-based prediction. However, if the predicted direction of the center point is inaccurate, the predicted population will be biased towards one side. In this paper, we propose a niche prediction strategy based on center and boundary points (PCPB) to solve the dynamic multi-objective optimization problems, which consists of three steps. After environmental changes are detected, the first step is to divide the niche, dividing different individuals in the PS into different niche populations. The second step is to independently predict different niches, and select individuals with good convergence and distribution in the niche to predict the individuals that will produce the next generation. Finally, some different individuals are randomly generated in the next possible PS area to ensure the diversity of the population. To verify whether our proposed strategy is effective and competitive, PCPB was compared with five state-of-the-art strategies. The experimental results show that PCPB performed competitively in solving dynamic multi-objective optimization problems, which proves that our algorithm has good competitiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.