Abstract
In edge computing, a reasonable edge resource bidding mechanism can enable edge providers and users to obtain benefits in a relatively fair fashion. To maximize such benefits, this paper proposes a dynamic multi-attribute resource bidding mechanism (DMRBM). Most of the previous work mainly relies on a third-party agent to exchange information to gain optimal benefits. It is worth noting that when edge providers and users trade with third-party agents which are not entirely reliable and trustworthy, their sensitive information is prone to be leaked. Moreover, the privacy protection of edge providers and users must be considered in the dynamic pricing/transaction process, which is also very challenging. Therefore, this paper first adopts a privacy protection algorithm to prevent sensitive information from leakage. On the premise that the sensitive data of both edge providers and users are protected, the prices of providers fluctuate within a certain range. Then, users can choose appropriate edge providers by the price-performance ratio (PPR) standard and the reward of lower price (LPR) standard according to their demands. The two standards can be evolved by two evaluation functions. Furthermore, this paper employs an approximate computing method to get an approximate solution of DMRBM in polynomial time. Specifically, this paper models the bidding process as a non-cooperative game and obtains the approximate optimal solution based on two standards according to the game theory. Through the extensive experiments, this paper demonstrates that the DMRBM satisfies the individual rationality, budget balance, and privacy protection and it can also increase the task offloading rate and the system benefits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.