Abstract

A new mathematical model incorporating biopolymer kinetics and the process of the simultaneous storage and growth are established for the treatment of low carbon source wastewater with a high effluent quality and energy efficiency. A set of initial parameter values was assigned as a combination of estimated values, literature-based values, and fitted values to simulate a cyclic activated sludge technology (CAST) system effectively. Compared with experimental data from the CAST system, the calibrated model demonstrated a good performance. Model simulations indicated that the recommended condition for a CAST fed with low carbon source wastewater was a volume ratio of the anoxic zone to the aerobic zone of 7/28. Moreover, using high-throughput 16S rRNA gene sequencing not only characterised the microbial communities in the CAST reactors operated under two feeding ratios but also indirectly validated the model predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.