Abstract
An arctic snow model was developed to predict the exchange of vapor-phase persistent organic pollutants between the atmosphere and the snowpack over a winter season. Using modeled meteorological data simulating conditions in the Canadian High Arctic, a single-layer snowpack was created on the basis of the precipitation rate, with the snow depth, snow specific surface area, density, and total surface area (TSA) evolving throughout the annual time series. TSA, an important parameter affecting the vapor-sorbed quantity of chemicals in snow, was within a factor of 5 of measured values. Net fluxes for fluorene, phenanthrene, PCB-28 and -52, and alpha- and gamma-HCH (hexachlorocyclohexane) were predicted on the basis of their wet deposition (snowfall) and vapor exchange between the snow and atmosphere. Chemical fluxes were found to be highly dynamic, whereby deposition was rapidly offset by evaporative loss due to snow settling (i.e., changes in TSA). Differences in chemical behavior over the course of the season (i.e., fluxes, snow concentrations) were largely dependent on the snow/air partition coefficients (K(sa)). Chemicals with relatively higher K(sa) values such as alpha- and gamma-HCH were efficiently retained within the snowpack until later in the season compared to fluorene, phenathrene, and PCB-28 and -52. Average snow and air concentrations predicted by the model were within a factor of 5-10 of values measured from arctic field studies, but tended to be overpredicted for those chemicals with higher K(sa) values (i.e., HCHs). Sensitivity analysis revealed that snow concentrations were more strongly influenced by K(sa) than either inclusion of wind ventilation of the snowpack or other changes in physical parameters. Importantly, the model highlighted the relevance of the arctic snowpack in influencing atmospheric concentrations. For the HCHs, evaporative fluxes from snow were more pronounced in April and May, toward the end of the winter, providing evidence that the snowpack plays an important role in influencing the seasonal increase in air concentrations for these compounds at this time of year.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.