Abstract
AbstractThis paper presents a graph‐based dynamic yaw model to predict the dynamic response of the hub‐height velocities and the power of a wind farm to a change in yaw. The model builds on previous work where the turbines define the nodes of the graph and the edges represent the interactions between turbines. Advances associated with the dynamic yaw model include a novel analytical description of the deformation of wind turbine wakes under yaw to represent the velocity deficits and a more accurate representation of the interturbine travel time of wakes. The accuracy of the model is improved by coupling it with time‐ and space‐dependent estimates of the wind farm inflow based on real‐time data from the wind farm. The model is validated both statically and dynamically using large‐eddy simulations. An application of the model is presented that incorporates the model into an optimal control loop to control the farm power output.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.