Abstract

We set up a time-continuous version of the first-order difference equation model of cocaine use introduced by Everingham and Rydell [S.S. Everingham, C.P. Rydell, Modeling the Demand for Cocaine, MR-332-ONDCP/A/DPRC, RAND, Santa Monica, CA, 1994] and extend it by making initiation an endogenous function of prevalence. This function reflects both the epidemic spread of drug use as users `infect' non-users and Musto's [D.F. Musto, The American Disease: Origins of Narcotic Control, Oxford University, New York, 1987] hypothesis that drug epidemics die out when a new generation is deterred from initiating drug use by observing the ill effects manifest among heavy users. Analyzing the model's dynamics suggests that drug prevention can temper drug prevalence and consumption, but that drug treatment's effectiveness depends critically on the stage in the epidemic in which it is employed. Reducing the number of heavy users in the early stages of an epidemic can be counter-productive if it masks the risks of drug use and, thereby, removes a disincentive to initiation. This strong dependence of an intervention's effectiveness on the state of the dynamic system illustrates the pitfalls of applying a static control policy in a dynamic context.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call