Abstract

Site-directed mutagenesis of human serum albumin was used to study the role of various amino acid residues in bilirubin binding. A comparison of thermodynamic, proteolytic, and x-ray crystallographic data from previous studies allowed a small number of amino acid residues in subdomain 2A to be selected as targets for substitution. The following recombinant human serum albumin species were synthesized in the yeast species Pichia pastoris: K195M, K199M, F211V, W214L, R218M, R222M, H242V, R257M, and wild type human serum albumin. The affinity of bilirubin was measured by two independent methods and found to be similar for all human serum albumin species. Examination of the absorption and circular dichroism spectra of bilirubin bound to its high affinity site revealed dramatic differences between the conformations of bilirubin bound to the above human serum albumin species. The absorption and circular dichroism spectra of bilirubin bound to the above human serum albumin species in aqueous solutions saturated with chloroform were also examined. The effect of certain amino acid substitutions on the conformation of bound bilirubin was altered by the addition of chloroform. In total, the present study suggests a dynamic, unusually flexible high affinity binding site for bilirubin on human serum albumin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.