Abstract

Streaming data is widely generated in our lives. This has promoted a lot of research on streaming data mining, such as streaming data clustering and filtering. In our work, we present a problem about data stream processing, namely, streaming data sorting. There are some important characteristics of streaming data. Firstly, streaming data comes in the form of streams. It is usually assumed that streaming data is infinite, so it cannot be stored completely in memory. Secondly, we must process the streaming data in real time, otherwise we may lose the opportunity to deal with it forever. Based on these characteristics, we propose a dynamic algorithm that can make full use of memory and minimize error to solve the problem of streaming data sorting, which is further combined with the BFR algorithm to sort a particular type of streaming data. Some experiments are conducted to confirm the effectiveness of the proposed algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.