Abstract

Hydrogen will become an essential energy source in the near future. In this regard, refineries can be considered as alternative sources of hydrogen production. In the present study, a tubular membrane reactor with radial-flow patterns of the sweeping gas and the naphtha feed named RF-TMR is proposed as a novel configuration for radial-flow naphtha reformers. Radial-flow reactors are used in refineries as a remedy for high pressure drop through the catalytic packed-bed reactors which disturbs the reactor operation. The cross section area of the tubular membrane reactor is divided into some subsections. The walls of the gaps are coated by a Pd–Ag membrane layer to separate hydrogen from reaction side and enhance the hydrogen and aromatic production rates by 0.33 ton/day and 5.5 ton/day, respectively (compared with the AF-TR). The performance of this novel configuration is investigated and compared with the axial-flow conventional tubular reactor (AF-TR) and axial-flow tubular membrane reactor (AF-TMR). Set of coupled partial differential–algebraic equations are solved by the orthogonal collocation method. Owing to a slight pressure drop in the tube side of RF-TMR, smaller catalysts’ particles with a negligible internal mass transfer resistance can be used to increase aromatics and hydrogen yields. This novel approach has the feasibility to be applied in the radial-flow moving bed reformers which are widely installed in refineries by licensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call