Abstract

The emergence of label-free lectin microarrays promises rapid and efficient glycoprofiling of complex analyte mixtures. Lectins have limited selectivity for different carbohydrate motifs necessitating relatively large array sizes to discriminate between glycoforms. Microarray technologies able to transduce the dynamics, instead of only the extent of binding, can introduce additional orthogonality in the array and therefore reduce its size. In this work, we develop a mathematical model of glycan binding dynamics to a label-free lectin sensor array, linking the matrix of observed dissociation constants, kinetics of binding, and occupancy to distinct glycoforms for identification. We introduce a matrix algebra approach that formulates the observed array dynamics in terms of a glycosylation matrix containing identifiers for each glycan chain on each protein isoform in the mixture. This formulation allows for straightforward calculation of the minimum array size necessary to distinguish a given set of glycans....

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.