Abstract

The landslide early warning system (LEWS) relies on various models for data processing, prediction, forecasting, and warning level discrimination. The potential different programming implementations and dependencies of these models complicate the deployment and integration of LEWS. Moreover, the coupling between LEWS and models makes it hard to modify or replace models rapidly and dynamically according to changes in business requirements (such as updating the early warning business process, adjusting the model parameters, etc.). This paper proposes a framework for dynamic management and integration of models in LEWS by using WebAPIs and Docker to standardize model interfaces and facilitate model deployment, using Kubernetes and Istio to enable microservice architecture, dynamic scaling, and high availability of models, and using a model repository management system to manage and orchestrate model-related information and application processes. The results of applying this framework to a real LEWS demonstrate that our approach can support efficient deployment, management, and integration of models within the system. Furthermore, it provides a rapid and feasible implementation method for upgrading, expanding, and maintaining LEWS in response to changes in business requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.