Abstract

Purpose The aim of this study was to develop a method able to quantify levator veli palatini (LVP) muscle shortening and contraction velocities using dynamic magnetic resonance imaging (MRI) throughout speech samples and relate these measurements to velopharyngeal portal dimensions. Method Six healthy adults (3 men and 3 women, M = 24.5 years) produced syllables representing 4 different manners of production during real-time dynamic MRI scans. We acquired an oblique-coronal slice of the velopharyngeal mechanism, which captured the length of the LVP, and manually segmented each frame. LVP shortening and muscle velocities were calculated from the acquired images. Results Using our method, we found that subjects demonstrated greater LVP shortening and higher maximum contraction velocities during fricative and plosive syllable production than during nasal or vowel syllable production. LVP shortening and maximum contraction velocity positively correlated with velopharyngeal port depth. Conclusions In vivo LVP function differs between manners of production, as expected, and an individual's velopharyngeal portal dimensions influence LVP function. These measures, contextualized with the force-length and force-velocity muscle relationships, provide new insight into LVP function. Future studies could use this method to investigate LVP function in healthy speakers and individuals with velopharyngeal dysfunction and how function relates to velopharyngeal anatomy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call