Abstract

We propose a dynamic logic DLb called “dynamic logic with branching modalities”, which extends the temporal dynamic logic DLT with a “branching modality” for specifying safety properties of regular programs with tests (simply “regular programs”). Compared to the trace modality of DLT for while programs that do not abort, branching modality of DLb does not exclude aborting traces introduced by regular programs, thus is able to capture a type of safety properties which are important for systems with failure behaviors. Moreover, it is congruent to the compositionality of regular programs so that the proof system naturally extended from that of DLT is proved to be complete for DLb. In this paper, we build the theory of DLb on both propositional and first-ordered levels, defining two logics: propositional DLb (PDLb) and first-ordered DLb (FODLb). PDLb forms the theoretical basis of DLb while FODLb is useful for practical verification. We propose the proof systems for PDLb and FODLb, and analyze their decidability, soundness and (relative) completeness in a formal way, through comparing their expressiveness and deduction capabilities with propositional dynamic logic (PDL) and first-order dynamic logic (FODL) respectively. We show that FODLb is actually an extension of DLT, and illustrate the motivations of using the branching modality through an example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.