Abstract

In a previous paper, Germano, et al. (1991) proposed a method for computing coefficients of subgrid-scale eddy viscosity models as a function of space and time. This procedure has the distinct advantage of being self-calibrating and requires no a priori specification of model coefficients or the use of wall damping functions. However, the original formulation contained some mathematical inconsistencies that limited the utility of the model. In particular, the applicability of the model was restricted to flows that are statistically homogeneous in at least one direction. These inconsistencies and limitations are discussed and a new formulation that rectifies them is proposed. The new formulation leads to an integral equation whose solution yields the model coefficient as a function of position and time. The method can be applied to general inhomogeneous flows and does not suffer from the mathematical inconsistencies inherent in the previous formulation. The model has been tested in isotropic turbulence and in the flow over a backward-facing step.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.